
Incorporating security requirements into communication protocols in Multi-
Agent Software Systems

Yuxiu Luo, Giannakis Antoniou, Leon Sterling
Department of Coumputer Science and software Engineering

University of Melbourne, VIC, 3010
{yxluo, gant, leon}@csse.unimelb.edu.au

Abstract

A communication protocol is a fundamental
component of a multi-agent system. The security
requirements for a communication protocol should be
articulated during the early stages of software
development. However, there is no formal way
provided for software developers to find out what
makes a communication protocol secure and what are
secure designs. In this paper we propose a method that
defines security requirements, bridges security
requirement analysis with security design, and
integrates the security techniques into a
communication protocol to fulfill the security
requirements.

1. Introduction
Security has become critical for robust software

systems. Security requirements (SRs) should be
considered in the early stage of software development
life cycle (SDLC). However, security is managed in an
ad-hoc fashion and as an afterthought. This leads to
problems and serious design challenges [1]. Two of the
reasons for poor security engineering are the lack of
security knowledge of software developers and
stakeholders [3], and a gap existing between SRs
analysis and security design;

In software engineering, requirement analysis
methods analyze SRs from several aspects. Design
methods embed security related information into
system design. Product-oriented approaches evaluate if
the final product satisfies the SRs. Process-oriented
approaches define development steps to deliver
security critical software. Agent-oriented software
engineering methodologies are extended to address
SRs. But none of them advise
stakeholders/inexperienced developers about basic SRs
nor provide enough information for developers to build
security. In security research, security techniques (STs)
are developed to satisfy SRs. However, it is hard for
software engineers to learn the techniques, understand
their characteristics and choose a proper ST within

limited time. For communication protocol (CPs),
development approaches, encryption algorithms and
techniques that verify if a CP fulfills the SRs are
proposed. They do not provide the solution to the
problem defined. As show by above analysis, security
can only be built at later stage of SDLC by experts.

This poster sketches a method that (1) allows
inexperienced developers to define SRs; (2) bridges the
gap between SR analysis and security design; and (3)
secures CP by choosing proper security techniques. We
do not analyze specific CPs or specific STs. Section 2
explains notations and security background. Section 3
shows our method. Section 4 presents an example.
Section 5 concludes.

2. Notations and Background
The protocol where Alice sends a message to Bob is

presented as: Alice Bob: message;
The security services (SSs) that make a protocol

secure are confidentiality, integrity, non-repudiation
and authentication. In some cases, the freshness of a
message should be guaranteed to prevent a replay
attack. A random number, nonce, should be included
as: Alice Bob:SAlice(msg, nonce).

STs support SSs. Digital signature (DS) achieves
non-repudiation and integrity of the message and the
authentication of the sender. Applying DS (with PKI)
is represented as: Alice Bob:SAlice(msg); SAlice(msg)
means that message msg is signed by the private key of
Alice. Encryption ensures the confidentiality of a
message. Asymmetric encryption (AE) is represented
as: Alice Bob:{msg}KBob; {msg}KBob means that
message msg is encrypted with Bob’s public key;
Symmetric encryption (SE) is represented as:
Alice Bob:{msg}KSkey; {msg}KSKey means that
message msg is encrypted with the secret key Key;

3. Method
1. Establish CP: after system goals and roles are

specified in analysis phase [4]. Protocols are
established to model how roles are involved to fulfill
system goals. In this step, security issues at enterprise

Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies

0-7695-3049-4/07 $25.00 © 2007 IEEE
DOI 10.1109/.48

159

Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies

0-7695-3049-4/07 $25.00 © 2007 IEEE
DOI 10.1109/.48

159

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:49:17 UTC from IEEE Xplore. Restrictions apply.

level (e.g. security policies, business rules/laws) are
captured. In design phase, we define the agents that
fulfill roles. Protocols are then refined by specifying
the sequence of interactions among agents and the
messages exchanged in each interaction.

2. Define SR: the security of a protocol is affected at
two levels. First, at enterprise level, the protocol
should be defined correctly. The sequence, the pre-
condition, the post-condition of interaction and
role/agent involved must comply with organization
security concerns. Second, at system level,
transactions and the messages exchanged should be
secured. In this step, we define SRs for the protocol at
system level. Security attributes (SAs), integrity,
confidentiality, availability, authentication, non-
repudiation and accountability, are the common
features that a secure system should have [2] (and thus
for a CP); therefore they imply the basic SRs for a
protocol. Within the context of protocol, the first three
are concerned with messages exchanged; the later three
are concerned with transactions. General SRs for a
protocol can be defined by attaching the first three SAs
to each message exchanged and by attaching the three
later SAs to each transaction of the protocol.

3. Enhance SRs into CP: this step bridges between
SR analysis and security design bidirectionally. First,
we apply corresponding STs to support the SRs
defined for the protocol (see 1st and 2nd column in
table1 1) Several STs can be available for one SR;
developers/stakeholders decide based on advantages
and disadvantages of a ST (see table2) and available
project resources. Second, we analyze whether the
protocol can be attacked and apply STs to avoid it
when possible attack is found (see 3rd and 2nd column
in table1).
Table 1. Security Repository Example

Table 2. Security Technique Selection Example

1 Availability (readiness of a correct service or message) is not
applicable in protocols because all the exchanged messages are
available. Accountability (availability and integrity of the identity of
the person who performed an operation) is out of protocol context,
because once we ensure the integrity, the accountability is
automatically satisfied. Thus they are not in table1.

4. Example
We demonstrate only steps 2 and 3 due to space

limit. A correct CP with security issues captured at
enterprise level is assumed to be available (see right
part of Figure1). Alice submits advertisement (ads),
auction due date, credit card information and minimum
acceptable offer (limit) to auction web site (AWS).
Bob requests ads (Request Ads), bids (Bid) for product
and gives credit card information to AWS. AWS
shows ads (Ads Info) and informs bid results (Bid
accepted).

Figure 1. Fulfill SRs for Communication Protocol

We take the first transaction as an example. First,
we define SRs by attaching SAs needed for the
exchanged message and for the transition. Then we
have SRs: Ads (integrity); DueDate (integrity); Credit
Card (confidentiality, integrity); limit (confidentiality
,integrity); Alice AWS: Ads, Due Date, Credit
Card, Limit (Non-repudiation), Second, we integrate
security by applying proper ST. We use DS for non-
repudiation, integrity and AE for confidentiality.
Besides, the freshness of the message should be
guaranteed to prevent malicious intermediate users
from re-submitting a message copy to AWS. Therefore
we have: Alice AWS: SAlice(Ads, Due Date, nonce,
{Credit Card, Limit}KAWS). For transaction: Bob
AWS: Request Ads, no SR is required because both the
message and the transaction are public. Left part of the
figure1 shows the secured CP produced by our method.

5. Conclusion
We present a simple method for software engineers

to enhance SRs into CP in multi-agent system. We can
improve it by considering relationships among
different roles/agents.

6. References
[1] R. Anderson, Security Engineering: A Guide to Building
Dependable Distributed Systems, 2001.
[2] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing”, IEEE Trans. Dependable and Secure
Computing. 2004
[3] B. W. Lampson, “Computer security in the real world”, in
Annual Computer Security Applications Conference, 2000.
[4] Y.Luo, L.Sterling, K.Taveter, “Modeling a Smart Music
Player with a Hybrid Agent-Oriented Methodology”, in Proc.
of International Requirements Engineering Conference,2007

160160

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:49:17 UTC from IEEE Xplore. Restrictions apply.

